Sono esercizi in cui devi "dimostrare" che i triangoli sono simili, quasi sempre utilizzando il primo criterio di similitudine, e quindi scrivere la proporzione; negli esami, di solito, capitano all'inizio di un problema piu' complesso 1) Se in un triangolo rettangolo e' iscritto un quadrato con un lato sull'ipotenusa allora l'ipotenusa e' divisa in 3 segmenti in cui quello centrale e' medio proporzionale fra gli altri due Soluzione 2) Dato il triangolo ABC si consideri la mediana AD. Per il punto E, preso su BC si tracci la parallela ad AD che interseca le rette AC ed AB nei punti F e G. Dimostrare che vale EF+EG=2AD Soluzione 3) In un trapezio rettangolo congiungere un punto del lato perpendicolare alle basi con gli estremi del lato obliquo in modo che i due triangoli rettangoli che si ottengono siano simili tra loro Soluzione 4) Dato un qualunque triangolo isoscele e considerata la circonferenza in esso inscritta, dimostrare che la distanza della base dal punto di contatto della circonferenza con ognuno dei lati congruenti e' la meta' della misura dell'altezza relativa ad ognuno dei lati congruenti Soluzione |