In questi esercizi devi trovare il valore numerico della misura di segmenti. Di solito si cerca sempre di considerare due triangoli simili tali che del primo di conoscano due lati e del secondo si conosca un lato corrispondente ad uno del primo, in modo da impostare la proporzione per trovare il valore del secondo lato. Per ora sono sviluppati solamente i primi due esercizi 1) Nel triangolo rettangolo ABC, retto in A il cateto AB e' 4/3 del cateto AC e l'ipotenusa vale cm 30. Condurre la perpendicolare all'ipotenusa da un punto D del cateto AB che tagli l'ipotenusa nel punto E. Sapendo che il triangolo DBE ha il lato BE che misura 4 cm determinarne le dimensioni Soluzione 2) Il triangolo isoscele ABC ha il perimetro che misura 30 cm, Sapendo che l'altezza relativa al lato obliquo e' 6/5 di quella relativa alla base BC calcolare la misura dell'area del triangolo Soluzione 3) Il perimetro di un trapezio misura 76 cm; i due lati obliqui sono congruenti alla base minore e ognuna delle proiezioni dei due lati obliqui sulla base maggiore misura 8 cm. Trovare il rapporto tra l'area del trapezio e l'area del triangolo che si ottiene prolungando i lati obliqui. Soluzione 4) Considerare il trapezio ABCD rettangolo in A e B con AD base minore; sapendo che le misure di AD, AB e BC sono rispettivamente a, b, c determinare un punto M su AB in modo che l'area del triangolo CDM sia l2. Tra quali limiti puo' variare l perche' il punto M sia su AB? Soluzione |