.
Varianza



Per poter avere una buona rappresentativita' del valore medio e' necessario introdurre un indice che misuri di quanto il valore medio si discosta dai dati, cioe' la varianza
Consideriamo una variabile aleatoria
X    X1 X2 X3 ......... Xn
f    p1 p2 p3 ......... pn

Se M(X) e' il suo valore medio, esso sara' rappresentativo se si discosta poco dai valori della variabile, cioe' se gli scarti
M(X) - Xk
sono abbastanza piccoli, quindi dovrei fare una nuova tabella con gli scarti
Pero', invece di considerare tutti i valori degli scarti devo cercare di concentrare il significato in un dato unico: la varianza, che misurera' la dispersione dei valori attorno al valore medio.
Definizione
La varianza e' il valor medio del quadrato degli scarti, cioe' la la somma dei quadrati degli scarti per le relative probabilita'
Viene indicata con i simboli Var(X) oppure 2(X)
2(X) = (M(X) - Xk)2 pk
Se vuoi approfondire e vedere tutto il ragionamento per trovare la formula
La varianza indica la concentrazione, quindi:
Minore e' la varianza e maggiore e' la concentrazione dei dati attorno al valore medio
Maggiore e' la varianza e maggiore e' la dispersione dei dati attorno al valore medio

Prendiamo il solito esempio del lancio di un dado:
X 1 2 3 4 5 6
f   1/6 1/6 1/6 1/6 1/6 1/6
Avremo
M(X) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6 + 4 · 1/6 + 5 · 1/6 + 6 · 1/6 = 21/6 = 7/2 = 3,5
Quindi la varianza sara'
2(X) =(1- 7/2)2· 1/6 + (2- 7/2)2· 1/6 + (3- 7/2)2· 1/6 +(4- 7/2)2· 1/6 + (5- 7/2)2· 1/6 +(6- 7/2)2· 1/6 =
=(-5/2)2· 1/6 + (-3/2)2· 1/6 + (-1/2)2· 1/6 +(1/2)2· 1/6 + (3/2)2· 1/6 +(5/2)2· 1/6 =
=(25/4) · 1/6 + 9/4 · 1/6 + 1/4 · 1/6 + 1/4 · 1/6 + 9/4 · 1/6 + 25/4 · 1/6 =
= 25/24 + 9/24 + 1/24 + 1/24 + 9/24 + 25/24 =
= 70/24 = 35/12

cioe' la varianza dei dati attorno al valore medio in questo caso vale circa 3

Pagina iniziale Indice di algebra Pagina successiva Pagina precedente