come si vede dalla figura in pratica vuol dire che se la funzione parte da un certo valore ed arriva allo stesso valore senza fare punte allora se e' continua e se l'intervallo e' chiuso e limitato ci deve essere un punto dove finisce di crescere (o di diminuire) e torna indietro (si puo' anche dire che la tangente in quel punto e' orizzontale) Matematicamente: se y=f(x) e' una funzione continua in un intervallo chiuso e limitato [a, b] e tale che f(a) = f(b) allora esiste un punto c appartenente ad [a, b] tale che f '(c)=0 L'utilizzo di questo teorema in tante verifiche sia orali che scritte risiede nel fatto che deve verificare quattro ipotesi
capisci che per risolverlo sei costretto a ragionare ed a sapere esattamente cosa si intende per funzione continua, per intervallo chiuso per intervallo limitato eccetera. Dopo aver provato da solo confronta con questi esempi piuttosto alla buona e che non comprendono certo tutti i casi possibili |